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The equations of motion of a system with a nonlinear, nonholonomlc constraint
as derived by Hamel do not describe the behavior of the system, 1f we con-
sider this system a limiting case of a nonholonomic system with linear con-
straints.

The derivation of the equations of motion-of mechanical systems with non-
linear, nonholonomic constraints is presented in a number of papers [1] to
[4]. A systematic development of the methods of analytical mechanlcs for
nonholonomic systems with nonlinear constrailnts has been presented by John-
sen [1], Hamel [4], Chetaev [3] and V.S. Novoselov*. There has been in the
past a lively discussion between Appell [ 2], Delassus [5], Beghin [6] and
others on the realization o6f nonlinear, nonholonomic constralnts, but in
spite of that none of the papers contains examples of systems with nonlinear,
nonholonomic constralnts which would differ essentially from the example
presented by Appell in 1911.

A number of authors [4] to [6] became interested in the example of Appell.
This example has been investigated in detall by Hamel who derived for 1t
equations of motion, starting from the generally accepted definition of
virtual displacements for systems with nonlinear, nonholonomic constraints.

In this paper we have demostrated that a more correct approach to the
system in the example of Appell-Hamel leads to motions which are not de-
scribed by the equations of motion derived by Hamel.

1. The example of Appell-Hamel. The equations of motion and formulation
of the problem. Appell [2] and Hamel consider a nonholonomic system shown
in Fig. 1. The welght of mass m hangs on & thread drawn through pulleys
and wound on & drum of radius p. The drum is jolned rigidly to a wheel of
radius & , which rolls without sliding on a horizontal plane touching it
at the point B . The legs of thé frame supporting the pulleys and keeping
the wheel vertical, slide on the horizontal plane without friction. Let x,Y
be the coordinates of the point B (the point of contact), 6 be the angle

* V.S. Novoselov, Certain problems of nonholonomic mechanics, Doctoral
dissertation, Moscow, 1958.
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between the plane of the wheel and the x-axis (Fig. 1), ¢ the angle of

spin of the wheel, x,y,z the coordinates of the mass m . From Fig. 1 we
have
dz = bdg (®>0) (1.1)
The coordinates JX,Y and X,y are related by
z=X + pcosg, y=Y + psing (1.2,

The condition for rolling without sliding leads to the equation of a
nonholonomic constraint

dX = adg cos 6, dY = adg sin 0 (1.3)

Let m,, 4 and C be, respectively, the mass and the central moments of
lnertla 6f the wheel. Neglecting the mass of the frame we construct the
Lagrangian

L=3m(z*+ y> + ) +3m (X? + Y9 +§ A6? + 5Co* — mgz

The equation of motion in variables ¢ and 8 are

(A + mp® 0" + mapbg = 0
[(m + my) a® + mb* + Cl " — maph® = — mgb (1.4)

Following Hamel we neglect the mass of the wheel (m; =4 = ¢ = 0) and
instead of (1.4) we obtain Equations

8" + ab'g’ = 0, (a® + b%) ¢" — apb2 = — gb (1.5)

which together with the linear nonholonomic constraints (1.3) describe the
inertial motion of the consldered system.

Equations (1.1) to (1.5) agree with
the equations derived by Hamel in [4]
for the case of 1nertial motlon. The
drawings shown 1n Hamel's book arc for
the case p < (0. We shall consider
separately the cases p > 0 and p <0
The system whose motion is described
by Equations (1.3) and (1.5) we shall
call the nondegenerate system.

The equations of motion of a non-
holonomlc system with nonlinear con-
straints were obtalned by Hemel by
letting p - O . From (1.5) follows that when p - O

=0, (a® +b)o" = — gb (1.6)
Let us consider the variables x,y,z . From (1.3) and (1.2) follows that
when p - O

Fig. 1

xr = agp cosh, y = ag sinb 1.7
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Eliminating from the above equations the variables ¢ and 8 , using (1.1),

and z.y.. _ x..y. = 7%

obtained from (1.7), we have the nonlinear equation of & nonholonomic con-

straint 2?4+ y? = (a? ] b?) 7? (1.8
and the equation of motion (1.6) in the form
z.y.. _ x--y~ — O, (a2 + b?) z" —_ —— g‘b2 (1.9)

Equations (1.9) (with the generalized forces along the x and y coordi-
nates) were also obtalned by Hamel [4]. Besldes, Hamel derived these equa-
tions by Gauss's princlple, which convinced him that they must be correct.
Thus, the system of Appell and Hamel, with nonlinear, nonholonomic¢ con-
straints, has been obtalned from a nonholonomic system with linear con-
straints by taking the limit when p - O . However, taking this limlt lowers
the order of the system of differential equations causing its degeneration
and it 1s not clear at the outset, whether the motions of the limiting system
(1.6) and (1.7) are the same as the motions of the nondegenerate system when
p - O . The question whether the equations of the degenerate system (1.6)
and (1.7) describe correctly the motion of the initial system with the vanish-
ingly small p remalns open.
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In this paper we investigate the motlons of & nondegenerate system at
p>0 and at p < 0, the limiting motions of & nondegenerate system when
|p| - 0, and also motions of a degenerate system, and we are able to answer
the posed question.

2. Dynamics of & nondegenerate system. Let us introduce new varilables
g and n through the relations

. . b2\ ]
0" =a, @ =pPn (a=(1+ﬁ) 'B=;z—gm)
Equations of motion (1.5) will have the form
WE=F &, = —14p8 (b= '—,E%>0) (2.1)

The signs plus or minus between terms refer to the two cases p > O and
p < 0. The upper sign refers to p > 0O, the lower to p < O . Motlons of



60 Iu.I. Neimerk and N.A. Pufaev

the system considered can be represented by the displacements of the tracing
point 1n the phase plane £n . Let us consider the partition of this plane
by trajectories. Dividing the second equation {2.1) by the first one we
obtain Equation

dn _ =14 pE 9
A 3 @2

with separable varlables. From it we find the family of integral curves
N? = p (4= In & — p&?) + const (2.3)

These curves are the trajectories which partition the E&n plane and are
shown 1n Flg. 2 and 3, where the arrows indicate the direction of motion of
the tracing polint.

A, The case p>0. The motion of the tracing point in the &n
plane is described by Equations

pE = — En, n = —1+4pg (2.4)

Assigning to the arbitrary constant in Equations (2.3) the initial values
€ = E, and n = n,, we obtaln

n* =p ln (88/ &%) —n (8= &) + n’ (2.5)

The phase trajectorles in the Egn plane are c;gsed curves, one inside
another and contain the singular points (— 1/7)/p, 0) ana (1 / }/p” 0),
which are themselves phase trajectories (Fig. 2¢).
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Substituting {(2.5) in the first equation of (2.4) we obtain

£ 2 1y
g =F s (u[n G —n @ — )]+
where the upper sign corresponds to the motion of the tracing point along
the upper half of the closed integral curve (Fig. 2 a) and passing through
the point £,,m0, and the lower sign to the motion along the lower half.
The above equation determines the relationship & = £(z)

, % =t—1, (2.6)
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To find the time dependence of the other varlables it 1s sufficient to
express them in terms of E . Thus, for the angle of rotatlon 8 of the

wheel plane we have the relation 68 = a€ . From this we find
g
— ' dt
Ta _=0—§ 2.7
”éﬂ Vil @/53) —p EE—EA] + 1o’ ° @1

The angle of spln of the wheel ¢ .5 expressed by the relation

¢ =Pfn=--pVpiln (€55 —pE—EDN] + 0’
@— o= F pBln (£ /%) (2.8)

Corresponding expressions for the coordinates Y and Y of the point B,
which 1s the point of contact of the wheel with the plane, are obtalned from
Equations (1.3). The speed V of the point 5 equals (2.9)

V=1/X:2 +Yt=al¢' |=apVp n (878> —p (B — &I + o

From this follows that at the instants of time when £ takes on the values
€ =g, and § = §,, where &, and E, are the roots of Equation

pln (878" —p (8 — &) +n2=0 (2.10)

(expressing the cendition for the intersection of the n = 0 axls by the
integral curve), an instantaneous rest of the polnt B occurs. Since at
these instants of time the angular veloclty 6 # 0, and ¢’ changes sign,
the trajectory of the point 5 forms here a cusp with the singular point
of the stationary point type. Between these singular polnts the trajectory
is a part of a spiral.

The results obtained permit to give a qualitative description of the
behavior of the system and to determlne the character of a trajectory traced
by the point £ at various initial conditions.

A simpler xind of motion of a system 1s obtalned in the case, when in the
€n plane the tracing point coincides with the singular point (:t pqh,(».
In this case o = O, the point B is at rest, and the mass n , hanging at
the constant height 2z = z,, rotates about an axis passing through B, with
the constant angular velocity 6 =g / I/ﬁﬁ Physically it means that the
moment of the frictlonal force F¥ == mpl? about the center of the wheel
balances the moment of the gravitational force mg , that is

aph? =gb or E= +1/Vp
Another simpler kind of motion 1s obtained when in the gn plane the tra-
cing point moves along the € = 0 axis. In this case 8 = 6, = const, that
is the trajectory of the point p 1s a straight line. From the equation
of motion mn'= —1 follows, that the mass falls down with the constant ac-

celeration gb? (211)

2 =—arw
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All the remaining motions of the system correspond to displacements of
the tracing poiq} in the E€gn plane along curves inclosing a region with the
points (j:1./]/}h 0).Further, the angular velocity 6  of the rotation of
the plane of the wheel osclllates about
a certain average 6°= const, and the
variable ¢° osclllates about its zero
value. Accordingly, in one circum-
ambulation of a tracing point along the
closed curve in Fig. 2q the point 5,
which is the point of contact of the
wheel wlth the plane, describes a curve

Fig. 4 which we shall call a cell. One of the

possible cells is shown in Fig. l4q,

where the point 1 corresponds to the value € = g, , and the point 2 to the
value € = £, . The whole trajectory consists of 1dentical cells (1 - 2 - 1),
which arrange themselves along a strip marked in Flg. 44 by the dotted cﬁrve.
A cell 1s symmetrical with respect to the line DD, . Therefore the dotted
curves can only be circular. In this way a trajectory of a point is always
contained in a circular strip. Depending on the initial conditions and the
relations between the parameters of the system, the trajectory of the point
£ 1s elther a closed curve, or a quasi-periodic curve, filling densely every-
where the annular reglon.

B. The case p < O . The equations of motion (2.1) in this case
have the form

BE =81, w=—1—p (u= %>o) (2.12)

The phase trajectories in the &rn plane form open curves, symmetrical
with respect to the coordinate axes (Fig. 3a). Let us write the equation
(2.3) of the integral curve passing through the point ¢ = Eos M = Mg

7= —pln (87§ +p € — &)+ 1 (2.13)

To obtaln equations expressing time dependence of £ and of other vari-
ables of interest, we can proceed the same way as 1n the case p > O . How-
ever, we can easlly find out that all these equations can be obtalned also
from {2.6) to (2.9) by replacing u by —p . Equation (2.10) changes into

p [n (8% / &%) +p (8% — &)1 = no* (2.14)

which has only one root £2= (€®), . PFrom (2.9) and from Fig.3a follows
that depending on the initial conditlons, the trajectory of the point B has
only one cusp-like singularity when mno > O , and none when no < O . Since
the infinite branches of all the integral curves in Fig. 3a approach the
€ = O axls, the trajectories of the point B when ¢ - —» and ¢ = + =
also have infinite branches which approach asymptotes. Consequently, the
whole (— ®» < t < + ») trajectory of the point B has the form shown in Fig.
5a, Thus the behavior of the system in the case p < O differs essentially
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from its behavlor 1in the case p > 0 . Only for the special value of the
initial conditions, when £, = O , the trajectory of the point 5B can be a
straight line in both cases and the behavior of the system ldentical.

3., Motion of the degenerate system. Limiting motion of the nondegenerate
system when |p| ~ 0, We have shown in Section 1 that the equations of motion
(1.6) or (1.9) of a system with nonlinear, nonholonomic constraint (1.8) are
obtained from Equations (1.5) or (2.1) of the nondegenerate system when p- O,
In this case Ejuations (2.1) take the form

t =0, n=—1 (3.1)

From this follows that tre phase space of
the degenerate system is the straight 1line
€ = 0. With arbltrary initial conditions the

displacement of the tracing point along the \I::z
phase line £ = 0 with the constant velocity i
n'= -~ 1 corresponds to the inertial motion of Fig. 5

a system. This means that the trajectory of

the point'of contact B , where the wheel touches the plane, will be always
a straight line along which the wheel rolls wlth constant acceleratlon
©°'=—p8 . We will show now that the motion described by equations (3.1)
differs from the limiting motion, which the system will perform when the
quantity |p| tends to zero. For this purpose it is sufficlent to investigate
a motion of the nondegenerate system when p - £+ O ., As we have done previ-
ously we shall consider separately the cases p > 0 and p < O

a) The case p>0. Fromthe first equation {2.4) follows that

. . . gn_ — oo, when En>0
11m§_—11mT_{+°°' when £1 <0

=0 p—0
that is the rate of change of the coordinate £ 1in the &v plane when u-0
grows without bounds at all values of § # 0 and n # 0. From this and
from Equations (2.2) and (2.5) follows that when u approaches zero the pic-
ture of the partition of the phase plane by the trajectories changes as shown
in Fig. 2b and 2¢. In the limiting cases (u = 0} the whole phase plane En
i1s the reglon of fast motions, with the exception of the line £ = 0 which
1s the axis of slow motlons. Besldes, in the region n > 0 the axis of
slow motions £ = O is stable with respect to the fast motlons, &and in
n < 0 1t is unstable.

(E+0, n£0)

We shall find the limiting motion which is being approached by the motlon
of the nondegenerate system when y - O . For this purpose we shall con-
sider the motion of the tracing point in the £gn plane along one of the
closed integral curves. The limiting position of an Integral curve 1is shown
in Fig. 6. Indeed, from Equation (2.5) follows that when u - O this equa-
tion degenerates into the pair of strailght lines n = x n, . Besides, the
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roots &, and g, of the equation (2.10) approach, respectively, zero or
infinity by the formula

f/ --q& —No® n°
|§11zeXP—‘_2 v | El=— (3.2)
£ p B
S 2 |oo
/1 ¢ F We shall find the intervals of variation of
time ¢ , and also of the angles § and ¢ when
7 --=f the tracing polnt moves on the segments (p, DE
. ¢ and FF 1in Fig. 6. The quantities which refer
1g. to these three segments will have indices 1, 2,

3 respectively.

On the segment 0D £ = O, hence by (2.4) follows
t

§.d7| = _Sdt’ or I =1,
0

0

the derivative ¢ = qf , therefore 8, = O

To calculate the quantity o;, we shall use the integral relation

¢ =Y/ (* + u’E’) + const; from which @ = — Y/;fn,’.

On the segment DF . From (2.6) we find
Ey

. dE . p, 'n 1]2 1

¢ =11m—p'-S———_—_11m——[ln_° _0_]__:_

2T e oy 3 poo M p,+2p, 5 "o

1

From the relation 6°= qf and from the first equation in (2.4) we obtain

iy Es
0, = aggdt = limgi§ dt = a
0 p=0 0 1
And finally
to
1
P2 = —ﬂnogdt = — Tﬁ"loz

0
On the segment EF . From the second equation in (2.4) we find
0 iy

2
d ="Lgdt, t, = lim X =0
_Sn. ! 2 0 ” ? w0 Mo
Further
1y
O = lim a{£dt = lim a2 £ —g, gy =lim B (n)ep £ =0
>0 0 B M p—0 Mo

0
On the segments FG, GH, HO the motion is symmetric.

The results obtained permlt to display the form of the trajectory of the
point of contact of the wheel with thd plane 5, in the limiting case when
u = 0, and also the character of the limiting motion of the system.
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When the tracing point moves along the contour ODEFGHO (Fig. 6) then
the system moves in the following way: in the interval of time ¢,= ne the

wheel rolls through the angle @, = — !/,§1,%, moving along the straight
line (el= 0), then in the interval of time tz= $n, the wheel rolls through
the same angle, that 1s @ = @, = — Y/,f1,%, and the plane of the wheel

rotates through the angle 6,=a .

The trajectory of the point B on this segment has a form of an arc,
whose length equals the preceding straight llne segment. Further, the plane
of the wheel rotates instantaneously through the angle §; + 6, = 20 and
the spin of the wheel changes direction. The trajectory of the paint 5 1is
then at the corner point where the angle 6 = 2¢ . Then the wheel again
describes an arc-llke trajectory, rolling in the interval of time ¢z = #no
through the angle @, = Vzﬁnoa and its plane through the angle 685=a .

Finally, in the interval of time ¢,= 1, the wheel moves on a stralght
line, rolling through the angle g = 1/,f1,%. At the end of this segment
of the trajectory the spin of the wheel changes direction, and the motion
repeats 1ltself.

The whole trajectory will have the form of a rosette, which can be a
closed or an open curve filling densely everywhere a certain annular reglon.

The size of this region 1s proportional to the magnitude of the initial
value |n,| of the velocity of spin of the wheel. The form of a trajectory
of the limiting motion is shown in Fig. 4bp .

b) The case p < 0. In this case from the first equation 1n
(2.12) follows that

lim & = Jim 31 — [T when En>0  (E50
”H‘?E o ¥ {—°°v whea §n <0 (n#o)

When u - O the plcture of the partition of the phase plane by the tra-
jectories changes according to Fig. 3p and 3¢ .

7 In the limiting case {u = O) the whole phase
plane will be also the reglon of fast motions,
and the € = O axis will be the region of slow
motions. Unlike in the case p > O, the semi-
axls £ = 0, n> 0 1s now unstable with respect
to the fast motions, and the seml-axis € = O,
n < 0 1is stable. To derive the limiting motion
of this nondegenerate system when u - 0, we
Fig. 7 shall consider the displacement of the tracing
point along the the integral curve, limiting position of which 1s shown in
Fig. 7, where the value of £, and £, are found, as in previous cases, from
(3.2). The intervals of variation of the time. t, and also of the angles 8
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and ¢ when the tracing point (Fig. 7) moves along the segments DE, Ef,
Fz and @y 4are found as iIn the case p > O

The character of the limiting motlon of the system and the form of the
trajJectory of the point B will be as follows: when the tracing point moves
along the € = 0 axis up to the point D , the wheel moves along a straight
line with a constant acceleration. After that, 1n the interval of time
t,= #n, the wheel rolls through the angle o, = #gnd, and 1ts plane rotates
through the angle 8,=a . On thls segment the trajectory of the point pB
has the form of an arc. Further, the plane of the wheel rotates instantane-
ously through the angle 68,+ 03= 2a, and the spin changes dlrection. The
trajectory of the point 5 will coincide then with the corner point. Then
the wheel describes agéin an arc, rolling in the interval of time ¢,= #n,
through the angle o@,= — %an , and 1ts plane rotatling through the angle
84=a . After this the wheel moves along a straight line, forming with the
initial stralght line the angle 8 = 4q . The form of the limiting trajec-
tory in the case p < O 1s shown in Fig. 5b .
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