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The equations of motion of a system with a nonlinear, nonholonomlc constx%lnt 
as derived by Hamel do not describe the behavior of the system, If we con- 
sider this system a limiting case of a nonholonomlc system with linear con- 
straints. 

The derivation of the equations of motlon.of mechanical systems with non- 
linear, nonholonomlc constraints Is presented In a number of papers Cl] to 
[41. A systematic development of the methods of analytical mechanics for 
nonholonomic systems with nonlinear constraints has been presented by John- 
sen [l], Hamel [4], Chetaev [3] and V.S. Novoselov*. There has been In the 
past a lively discussion between Appell [2], Delassus [5], Beghln [6] and 
others on the realization bf nonlinear, nonholonomlc constraints, but In 
spite of that none of the papers contains examples of systems with nonlinear, 
nonholonomic constraints which would differ essentially from the example 
presented by Appell ln 1911. 

A number of authors [4] to [6] became Interested in the example of Appell. 
This example has been Investigated in detail by Hamel who derived for It 
equations of motion, starting from the generally accepted definition of 
virtual displacements for systems with nonlinear, nonholonomic constraints. 

In this paper we have demostrated that a more correct approach to the 
system In the example of Appell-Hamel leads to motions which are not de- 
scribed by the equations of motion derived by Hamel. 

1. 'Phr .a~@. of Appall-Iian.1. The rquatlona of motion and fomulrtion 

of thr p~oblan. Appell [2] and Hamel consider a nonholonomlc system shown 

In Fig. 1. The weight of mass m hangs on a thread drawn through pulleys 

and wound on a drum of radius b. !Che drum Is joined rigidly to a wheel of 

radius u , which rolls without sliding on a horizontal plane touching lt 

at the point B . The legs of thk frame supporting the pulleys and keeping 

the wheel vertical, slide on the horizontal plane without friction. Let X,Y 

be the coordinates of the point B (the point of contact), 8 be the angle 

* V.S. Novoselov, Certain problems of nonholonomic mechanics, Doctoral 
dissertation, Moscow, 1958. 
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between the plane of the wheel and the x-axis (Fig. l), cp the angle of 

spin of the wheel, x,I/,z the coordinates of the mass m . From Fig. 1 we 
have 

dz = b&q. (b > 0) (1.1) 

The coordinates X,Y and x,y are related by 

x = x + pcose, y=Y+psin8 (1.2, 

The condition for rolling without sliding leads to the equation of a 

nonholonomic constraint 

dX = adq cos 8, dl’ = adq sin 8 (1.3) 

Let m,, A and C be, respectively, the mass and the central moments of 

inertia bf the wheel. Neglecting the mass of the frame we construct the 

Lagranglan 

L = + m (x.2 + ya2 + 2’“) + -+ m, (X’2 + Y “) + $ AV2 + f Ccp” - mgz 

The equation of motion In variables cp and 0 are 

(A + mp2) 0” + mape’cp’ = 0 

I(m f m,) a2 f mb2 + Cl cp” - mapV = - mgb (I.41 

Following Hamel we neglect the mass of the wheel (m, = A = ~7 = 0) and 

Instead of (1.4) we obtain Equations 

(a” + b2) cp” - apW2 = - gb (1.5) 

which together with the linear nonholonomic constraints (1.3) describe the 

Inertial motion of the considered system. 

Equations (1.1) to (1.5) agree with 

the equations derived by Hamel In ['cl 

for the case of Inertial motion. The 

drawings shown In Hamel's book arc for 

the case p < 0. We shall consider 

separately the cases p > 0 and p < 0 

The system whose motion is described 

by Equations (1.3) and (1.5) we shall 

call the nondegenerate system. 

The equations of motion of a non- 

holonomlc system with nonlinear con- 
FIR. 1 

straints were obtained by 

letting p - 0 . From (1.5) follows that when p - 0 

8"= 0, (a" + b2)q" = - gb 

Let us consider the variables X,I/,Z . From (1.3) and (1.2) 

when p - 0 
x' = acp’ cos 0, y’ = acp' Sin 0 

Hemel by 

(1.6) 

follows that 

(1.7) 
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Eliminating from the above equations the variables 9, and e , using (l.l), 

and . . . 
XY - xSSy’ = 2.20 

obtained from (1.7), we have the nonlinear equation of a nonholonomlc con- 

straint 
xe2 + ys2 = (a” I b2) za2 (1.8) 

and the equation of motion (1.6) In the form 
. . . 

XY - x”y’ = 0, (a” + b2) z” = - gb2 (1.9) 
Equations (1.9) (with the generalized forces along the x and y coordl- 

nates) were also obtained by Hamel [4]. Besides, Hamel derived these equa- 

tions by Gauss's principle, which convinced him that they must be correct. 

Thus, the system of Appell and Hamel, with nonlinear, nonholonomlc con- 

straints, has been obtained from a nonholonomic system with linear con- 

straints by taking the limit when p + 0 . However, taking this limit lowers 

the order of the system of differential equations causing its degeneration 

and It 1s not clear at the outset, whether the motlonsof the limiting system 

(1.6) and (1.7) are the same as the motions of the nondegenerate system when 

p-0. The question whether the equations of the degenerate system (1.6) 

and (1.7) describe correctly the motion of the Initial system with the vanlsh- 

lngly small p remains open. 

Pig. 2 

In this paper we Investigate the motions of a nondegenerate system at 

p > 0 and at p c 0 , the limiting motions of a nondegenerate system when 

IPI - 0, and also motions of a degenerate system, and we are able to answer 

the posed question. 

Q, oJmrmior of a Aon&rgonorrtr 

5 and q through the relations 

rprtom. Let us Introduce new variables 

Equations of motion (1.5) will have the form 

(2.1) 

The signs plus or mlnus between terms refer to the two cases p > 0 and 

p<o. The upper sign refers to p > 0, the lower to p < 0 . Motions of 
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the system considered can be represented by the displacements of the tracing 

point in the phase plane <n . Let us consider the partition of this plane 
by trajectories. Dividing the second equation (2.1) by the first one we 

obtain Equation 
dl -IfN? 
als=P WEl1 (2.2) 

with separable variables. From it we find the family of integral curves 

r1’ = I” (31 In E2 - FE”) + const (2.3) 
These curves are the trajectories which partition the 5n plane and are 

shown In Fig. 2 and 3, where the arrows Indicate the direction of motion of 

the tracing point. 

A. The case p>O. The motion of the tracing point in the sn 

plane Is described by Equations 

Assigning to the arbitrary constant in Equations (2.3) the initial values 

5 = .& and n = Q, , we obtain 

qz = p IIn (5" i Eo") - P (P - $02)l + rln2 w$ 

The phase trajectories in the 5s plane are closed curves, one inside 

another and contain the singular points (- 1 / VL 0) and (1 / 1/F, O), 

which are themselves phase trajectories (Fig. 2 a). 

T 

i C 

Substituting (2.5) in the first equation of (2.4) we obtain 

where the upper sign corresponds to the motion of the tracing point along 

the upper half of the closed integral curve (Fig. 2 a) and passing through 

the point &,~b, and the lower sign to the motion along the lower half. 
The above equation determines the relationship 5 = s(t) 

Fig. 3 

(2.6) 
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To find the time dependence of the other variables it Is sufficient to 

express them In terms of 5 . Thus, for the angle of rotation FJ of the 

wheel plane we have the relation 0' = (~5 . From this we find 

(2.7) 

The angle of spin of the wheel cp .Ls expressed by the relation 

07 - v. = + k@ ln (E i Eo)) (2.8) 
Corresponding expressions for the coordinates X and Y of the point 8, 

which is the point of contact of the wheel with the plane, are obtained from 

Equations (1.3). The speed V of the point B equals 
(2.9) 

v = 1/x:2 + 1.‘” = a / cp’ 1 = up -fi [In (E” / Eo2) - p (E” - Eo2) I + qo2 

From this follows thatatthelnstants of time when 5 takes on the values 

5 = <I and 5 = <,,, where c1 and 52 are the roots of Equation 

(2.10) 

(expressing the condition for the Intersection of the n = 0 axis by the 

integral curve), an Instantaneous rest of the point B occurs. Since at 

these Instants of time the angular velocity 13'f 0, and up' changes sign, 

the trajectory of the point B forms here a cusp with the singular point 

of the stationary point type. Between these singular points the trajectory 

Is a part of a spiral. 

The results obtained permit to give a qualitative description of the 

behavior of the system and to determine the character of a trajectory traced 

by the point B at various Initial conditions. 

A simpler kind of motion of a system Is obtained In the case, when in the 

tJn plane the tracing point coincides with the singular point (& ~"$0). 

In this case cp'= 0, the point B is at rest, and the mass m , hanging at 

the constant height .z = zO, rotates about an axis passing through B, with 

the constant angular velocity 8' =a / $$. Physically it means that the 

moment of the frictional force F* = mpw2 about the center of the wheel 
balances the moment of the gravitational force mQ , that is 

UP0 ‘2 = gb or E= +1/1/F 

Another simpler kind of motion is obtained when in the <n plane the tra- 

cing point moves along the 5 = 0 axis. In this case 8 = 8, = ConSt, that 

is the trajectory of the point B is a straight line. From the SqUation 

of motion n'= -1 follows, that the mass falls down with the constant ac- 

celeratlon gb= 2” = - - 
a= + b= 

(2.11) 
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All the remaining 

the tracing point in 
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motions of the system correspond to displacements of 

the cn plane along curves inclosing a region with the 

Further, the angular velocity 8' of the rotation of 

the plane of the wheel oscillates about 

a b ,.--- -, a certain average 8'= const, and the 

.< _-_ )\ variable cp' oscillates about its zero 

value. Accordingly, in one circum- 

ambulation of a tracing point along the 

closed curve in Fig. 2a thepoint B , 

which is the point of contact of the 

wheel with the plane, describes a curve 

Fig. 4 which we shall call a cell. One of the 

possible cells is shown in Fig. 'cc, 

where the point 1 corresponds to the value 5=s1> and the point 2 to the 

value 5 = cn . The whole trajectory consists of Identical cells (1 - 2 - l), 

which arrange themselves along a strip marked in Fig. 4c by the dotted curve. 

A cell Is symmetrical with respect to the line DD1 . Therefore the dotted 

curves can only be circular. In this way a trajectory of a point is always 

contalned In a circular strip. Depending on the initial conditions and the 

relations between the parameters of the system, the trajectory of the point 

B Is either a closed curve, or a quasi-periodic curve, filling densely every- 

where the annular region. 

B. The case p<o. The equations of motion (2.1) in this case 

have the form 

PC = E% q'= - 1 -pE" ("=$>O 
) 

(2.12) 

The phase trajectories in the 5n plane form open curves, symmetrical 

with respect to the coordinate axes (Fig. 3a). Let us write the equation 

(2.3) of the integral curve passing through the point 5 = So, ‘T- = q, 

q2 = - p Dn (E” I %I)“) + p (E” - %o”)l + rlo (2.13) 

To obtain equations expressing time dependence of 5 and of other vari- 

ables of interest, we can proceed the same way as in the case p > 0 . How- 
ever, we can easily find out that all these equations can be obtained also 

from (2.6) to (2.9) by replacing p by - p . Equation (2.10) changes into 

p [In (E” / Eo”) + P (E” - %02)l = 10~ (2.14) 

which has only one root <"= (<2)0 . From (2.9) and from Fig.3a follows 

that depending on the Initial conditions, the trajectory of the point B has 

only one cusp-like singularity when %'C > and none when no < 0 . Since 

the infinite branches of all the Integral curves in Fig. 3a approach the 

5 = 0 axis, the trajectories of the point B when t - - - and t - + - 

also have Infinite branches which approach asymptotes. Consequently, the 

whole (-m < t < + m) trajectory of the point B has the form shown In Fig. 

5a. Thus the behavior of the system in the case p < 0 differs essentially 



from its behavior in the case P > 0 . Only for the special value of the 

initial conditions, when co = 0 , the trajectory of the point B can be a 

straight linein both cases and the behavior of the system identical. 

3, Motion of the degmnrrrta ryetom. Llmltlng motion of thr nondrgenarbtr 
ryrtem When Ip 1 - 0. We have shown in Section 1 that the equations ofmotlon 

(1.6) or (1.9) of a system with nonlinear, nonholonomic constraint (1.8) are 

obtained from Equations (1.5) or (2.1) of the nondegenerate system when P- 0. 

In this case Equations (2.1) take the form 

E’ = 0, q-Z__1 

From this follows that the phase space of 

the degenerate system is the straight line 

5 = 0. With arbitrary initial conditions the 

displacement of the tracing point along the 

phase line 5 = 0 with the constant velocity 

q'= - 1 corresponds to the inertial motion of 
Fig. 5 

a system. This means that the trajectory of 

the point' of contact B , where the wheel touches the plane, will be always 

a straight line along which the wheel rolls with constant acceleration 
. . 

m =-s. We will show now that the motion described by equations (3.1) 

differs from the limiting motion, which the system will perform when the 

quantity IpI tends to zero. For this purpose It Is sufficient to Investigate 

a motion of the nondegenerate system when p - f 0 . As we have done previ- 

ously we shall consider separately the cases P'O and PC0 

a) The case p>o. From the first equation (2.4) follows that 

that is the rate of change of the coordinate 5 in the 51 plane when p- 0 

grows without bounds at all values of 5 # 0 and n # 0. From this and 

fromEquatIons (2.2) and (2.5) follows that when p approaches zero the pic- 

ture of the partition of the phase plane by the trajectories changes. as shown 

in Fig. 2b and 2~. In the limiting cases (p = 0) the whole phase plane <n 

Is the region of fast motions, with the exception of the line 5 = 0 which 

is the axis of slow motions. Besides, in the region n > 0 the axis of 

slow motions 5 = 0 is stable with respect to the fast motions~ and in 

n < 0 It Is unstable. 

We shall find the limiting motion which Is being approached by the motion 

of the nondegenerate system when u - 0 . For this purpose we shall con- 

sider the motlon.of the tracing point in the 5n plane along one of the 

closed Integral curves. The limiting position of an Integral curve Is shown 

in Fig. 6. Indeed, from Equation (2.5) follows that when p - 0 this equa- 

tion degenerates into the palr of straight lines n = f Q . Besides, the 
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roots <I and c2 of the equation (2.10) approach, respectively, zero or 

infinity by the formula 
'1 _- 
H 

c 

s; G. 00 

I3 

IEJZexp-+ I Ezl=-$ (3.2) 

0 E F We shall find the intervals of variation of 

time t , and also of the angles 8 and q when 
-_ f the tracing point moves on the segments OD, DE 

Fig. 6 
and EF In Fig. 6. The quantities which refer 

to these three segments will have indices 1, 2, 

3 respectively. 

On the segment OD 5 = 0, hence by (2.4) follows 

fdq = -_5dt, er 
t1 = rlo 

0 0 

the derivative e'= a< , therefore e1 = 0 

To calculate the quantity ml, we shall use the integral relation 

cp = l/,e (qa + pa%") f con&; from which ‘pl = - 1/2~qo2. 

On the segment DE . From (2.6) we find 

From the relation '&I'= a{ and from the first equation in (2.4) we obtain 

ts e* 
0,=u %dt=limw 

s p-*0 %I 
z 

d%=a 

0 1 
And finally 

On the segment 

Further 

t. 

‘p2= -pqo at= - s $ hOa 
0 

EF . From the second equation In (2.4) we find 

0 1 dq = ${a, or t, = limL= 90 0 

-90 0' 
IL+0 

6, = lim u &it = lim a$$- =a, 
s 

p+o 0 P+J 
%I = lJ; B h)cp $ = 0 

On the segments FG, GX, HO the motion is symmetric. 

The results obtained permit to display the form of the trajectory of the 

point of contact of the wheel with thd plane 8, in the limiting case when 

u = 0, and also the character of the llmltlng motion of the system. 
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When the tracing point moves along the contour ODEFGHO (Fig. 6) then 

the system moves In the following way: In the Interval of time t,= rb the 

wheel rolls through the angle q1 = - '/.$?lo2, moving along the straight 

line (e,= 0), then in the interval of time tz= hn,, the wheel rolls through 

the same angle, that Is 'pa = 'pl = - '/.$Q2, and the plane of the wheel 

rotates through the angle e*= a . 

The trajectory of the point B on this segment has a form of an arc, 

whose length equals the preceding straight line segment. Further, the plane 

of the wheel rotates instantaneously through the angle 03 +e4 =2c and 

the spin of the wheel changes direction. The trajectory of the point B Is 

then at the corner point where the angle 0 = Cu . Then the wheel again 

describes an arc-like trajectory, rolling in the Interval of time t6 = &nc 

through the angle (p5 = 1/2@~02, and Its plane through the angle es= (L . 

Finally, In the Interval of time &= no the wheel moves on a straight 

line, rolling through the angle (pe = 1/2p'Q2. At the end of this segment 

of the trajectory the spin of the wheel changes direction, and the motion 

repeats itself. 

The whole trajectory will have the form of a rosette, which can be a 

closed or an open curve filling densely everywhere a certain annular region. 

The size of this region is proportional to the magnitude of the initial 

value 1% 1 of the velocity of spin of the wheel. The form of a trajectory 

of the limiting motion Is shown In Fig. 4 b . 

b) 

(2.12) 

The case p<o. In this case from the first equation In 

follows that 

lim E’ = lim Es _ + Oos when Erl>O E#O 
. . -L -00, *en Es<0 ( 1 r1#0 

When p- 0 the picture of 

jectories changes according to 

\p 

the partition of the phase plane by the tra- 

Fig. 3b and 30 . 

In the limiting case (cl = 0) thewhole phase 

plane will be also the region of fast motions, 

and the 5 = 0 axis will be the region of slow 

motions. Unlike In the case p > 0, the semi- 

axis 5 _= 0, n > 0 Is now unstable with respect 

to the fast motions, and the semi-axis 5 = 0, 

n c 0 is stable. To derive the llmltlng motion 

of this nondegenerate system when )1 - 0, we 
Fig. 7 shall consider the displacement of the tracing 

point along the the Integral curve, llmltlng position of which Is shown in 

Fig. 7, where the value of <I and ta are found, as In previous cases, from 

(3.2). The intervals of variation of the time. t, and also of the angles 0 
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and cp when the tracing point (Fig. 7) moves along the segments DE, Er", 

FG and GH are found as in the case p>O. 

The ChardCtW of the limiting im>tion of the system and the form of the 

trajectory of the point B will be as follows: when the tracing point moves 

along the 5 = 0 axis up to the point D , the wheel moves along a straight 

line with a constant acceleration. After that, in the interval of time 

t,= ano the wheel rolls through the angle Q= *@q,", and Its plane rotates 

through the angle 'tll= a . On this segment the trajectory of the point B 

has the form of an arc. Further, the plane of the wheel rotates lnstantane- 

ously through the angle 8,+ 13~= 2a, and the spin changes direction. The 

trajectory of the point B will coincide then with the corner point. Then 

the wheel describes aga%n an arc, rolling in the interval of time t4= 3% 
through the angle (p4= - @no*, and its plane rotating through the angle 

e4= a . After this the wheel moves along a straight line, forming with the 

initial straight line the angle 8 = 4a . The form of the limiting trajec- 

tory In the case p < 0 is showninFig. 5b. 
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